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In this talk, we only deal with simple undirected graphs. Let §(G) and A(G)
denote the minimum and maximum degree of a graph G, respectively, and let
02(G) denote the minimum degree sum of nonadjacent vertices in G. Dirac [1]
found sufficient conditions for a graph G to have a Hamilton cycle in terms of
d(G), and Ore [2] found similar conditions in terms of o5(G). Ore’s result follows
that, for a graph G of order n, if 05(G) > n — 1, then G has a Hamilton path. In
this talk, we generalize the result by focusing the number of vertices of degree 2
in spanning trees.

Let G be a graph of order n such that o5(G) > n — 1. Ore’s result grantees that
G has a spanning tree with n — 2 vertices of degree 2. Our question is that, for an
integer k£ (0 < k <n —2), does G have a spanning tree with k vertices of degree
27 Tt is easy to see that G never has such a spanning tree when £ = n — 3. For
other integers, we prove the following.

Theorem 1 Let G be a graph of order n where n > 10 and let k € {0,1,...,n—
4,n — 2} be an integers. If oo(G) > n — 1, then, for each k, G has a spanning
tree with k vertices of degree 2.

In order to prove Theorem 1, we prove two lemmas. A spider is a tree obtained
from a star by subdividing some edges (see Figure 1).

Lemma 1 Let G be a graph of order n and letk € {n—A(G)—1...,n—4,n—2}
be an integers. If 02(G) > n — 1, then, for each k, G has a spider with k vertices
of degree 2 as a spanning tree.

Lemma 2 Let G be a graph of order n where n > 10 and let k € {0,1...,n —
A(G) — 2} be an integers. If 02(G) > n — 1, then, for each k, G has a spanning
tree with k vertices of degree 2.

Figure 1: A spider obtained from K 4.
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