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A set of vertices S resolves a graph G if every vertex is uniquely determined by
its vector of distances to the vertices in S. The metric dimension of G is the
minimum cardinality of a resolving set of G.

Let {G1, G2, . . . , Gn} be a finite collection of graphs and each Gi has a fixed ver-
tex v0i

called a terminal. The amalgamation Amal{Gi; v0i
} is formed by taking

all the Gi’s and identifying their terminals. Here we study the metric dimension
of Amal{Gi; v0i

} for {G1, G2, . . . , Gn} a finite collection of arbitrary graphs. We
give lower and upper bounds for the dimension, show that the bounds are tight,
and construct infinitely many graphs for each possible value of dimensions.
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