Rainbow matchings in bipartite graphs and in matroids

Ran Ziv

(joint work with Ron Aharoni and Daniel Kotlar)

Let $\mathcal{F} = (F_1, \ldots, F_n)$ be a family of n matchings in a bipartite graph. A (partial) rainbow matching in \mathcal{F} is a matching consisting of at most one edge from each F_i . A recent conjecture of Aharoni and Berger [1] asserts that \mathcal{F} has a rainbow matching of size n when each of the n matchings in \mathcal{F} has at least n + 1 edges. This conjecture generalizes a famous conjecture of Ryser, Brualdi and Stein [4, 6], saying that any Latin square of size n has a transversal of size n - 1. Aharoni, Charbit and Howard [2] proved that if each F_i has $\lfloor 7n/4 \rfloor$ edges, then \mathcal{F} has a rainbow matching of size n. With Daniel Kotlar we apply a different method to improve this bound to $\lfloor 5n/3 \rfloor$.

A theorem of Woolbright [7], and independently of Brouwer, de Vries and Wieringa [3], asserts that if each F_i has n edges then \mathcal{F} has a rainbow matching of size $n - \sqrt{n}$. A theorem of Drisko [5] asserts that if each F_i has n edges, but \mathcal{F} consists of 2n-1 matchings, then \mathcal{F} has a rainbow matching of size n. With Ron Aharoni and Daniel Kotlar we prove analogous theorems that guarantee a large rainbow set in the intersection complex of two general matroids, for families of sets in that complex.

References

- R. Aharoni, E. Berger, Rainbow matchings in r-partite r-graphs, Electron. J. Combin 16:1 (2009), R119.
- [2] R. Aharoni, P. Charbit, D. Howard, On a generalization of the Ryser-Brualdi-Stein conjecture, manuscript.
- [3] A.E. Brouwer, A.J. de Vries, R.M.A. Wieringa, A lower bound for the length of partial transversals in a latin square, Nieuw Arch. Wisk. 24:3 (1978), 330–332.
- [4] R.A. Brualdi, H.J. Ryser, Combinatorial matrix theory, Cambridge Univ. Press, 1991.
- [5] A.A. Drisko, Transversals in row-Latin rectangles, J. Combin. Theory Ser. A 84 (1998), 181–195.
- S.K. Stein, Transversals of Latin squares and their generalizations, Pacific J. Math. 59:2 (1975), 567–575.
- [7] D.E. Woolbright, An $n \times n$ Latin square has a transversal with at least $n \sqrt{n}$ distinct elements, J. Combin. Theory Ser. A 24 (1978), 235–237.