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Let F = (F1, . . . , Fn) be a family of n matchings in a bipartite graph. A (partial)
rainbow matching in F is a matching consisting of at most one edge from each
Fi. A recent conjecture of Aharoni and Berger [1] asserts that F has a rainbow
matching of size n when each of the n matchings in F has at least n + 1 edges.
This conjecture generalizes a famous conjecture of Ryser, Brualdi and Stein [4, 6],
saying that any Latin square of size n has a transversal of size n − 1. Aharoni,
Charbit and Howard [2] proved that if each Fi has ⌊7n/4⌋ edges, then F has a
rainbow matching of size n. With Daniel Kotlar we apply a different method to
improve this bound to ⌊5n/3⌋.
A theorem of Woolbright [7], and independently of Brouwer, de Vries and Wieringa
[3], asserts that if each Fi has n edges then F has a rainbow matching of size
n−√

n. A theorem of Drisko [5] asserts that if each Fi has n edges, but F consists
of 2n−1 matchings, then F has a rainbow matching of size n. With Ron Aharoni
and Daniel Kotlar we prove analogous theorems that guarantee a large rainbow
set in the intersection complex of two general matroids, for families of sets in that
complex.
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