A large k-tree in connected $K_{1,k+1}$ -free graphs

Kenta Ozeki

(joint work with Takeshi Sugiyama)

Let k be an integer with $k \ge 2$. A k-tree is a tree whose maximum degree is at most k. We denote by $K_{1,k}$ the star with k vertices of degree 1. A graph G is said to be $K_{1,k}$ -free if G has no induced subgraph that is isomorphic to $K_{1,k}$.

It is well-known that every connected $K_{1,k}$ -free graph has a spanning k-tree, (see [1],) but there are infinitely many connected $K_{1,k+1}$ -free graphs that has no spanning k-trees (for example, consider the graph obtained from a large complete graph by attaching k-1 new edges to each of the vertices of the complete graph). The purpose of this talk is to find a large k-tree in connected $K_{1,k+1}$ -free graphs. Indeed, we show that for every integer k with $k \geq 3$, every connected $K_{1,k+1}$ -free graph G has a k-tree T such that $|T| \geq (|G|-1)^{\beta} + 1$, where

$$\beta = \min \left\{ \log_{h(k-1)} \left(h(k-2) + 1 \right) : h \text{ is a positive integer} \right\}.$$

See Table 1 for the approximate values of β for small k. We will also show that the magnitude of |G| - 1 (the value of β) in the above result is best possible.

Table 1: The approximate values of β with the values of h attaining it.

k	3	4	5	6	7
β	$0.7737 \ (h=3)$	$0.8842 \ (h=4)$	$0.9251 \ (h=4)$	$0.9457 \ (h=4)$	$0.9579 \ (h=5)$

References

 B. Jackson, N.C. Wormald, k-walks of graphs, Australas. J. Combin. 2 (1990), 135–146.