On the family of r-regular graphs with Grundy number r+1

Nicolas Gastineau

(joint work with Hamamache Kheddouci and Olivier Togni)

The Grundy number of a graph G, denoted by $\Gamma(G)$, is the largest k such that there exists a partition of V(G), into k independent sets V_1, \ldots, V_k and every vertex in V_i is adjacent to at least one vertex in V_j , for every j < i. Let the neighborhood N(v) of a vertex v be $\{u \in V(G) | uv \in E(G)\}$. A set X of vertices is an *independent module* if X is an independent set and all vertices in X have the same neighborhood.

The Grundy number is a well studied problem [1, 2, 5]. The *b*-chromatic number of regular graphs has been investigated in a series of papers [3, 4]. Our aim is to establish similar results for the Grundy number. Our subject is the family of *r*-regular graphs such that $\Gamma(G) = r + 1$. Using the notion of independent module, a characterization of this family is given for r = 3. Moreover, we prove that, for $r \leq 4$, the family of *r*-regular graphs without induced C_4 is included in this family. **Definition 1** Let G be an *r*-regular graph.

- 1. A vertex v is a $(0, \ell)$ -twin-vertex if there exists an independent module of cardinality $r + 2 \ell$ which contain v.
- 2. A vertex v is a $(1, \ell)$ -twin-vertex if N(v) can be partitioned into at least $\ell 1$ independent modules.
- 3. A vertex v is a $(2, \ell)$ -twin-vertex if N(v) is independent and every vertex in N(v) is a $(1, \ell)$ -twin-vertex.

Theorem 2 Let G be a cubic graph. $\Gamma(G) \leq 3$ if and only if every vertex is a (i, 3)-twin-vertex, for some $i, 0 \leq i \leq 2$.

Theorem 3 Let G be a r-regular graph, with $r \leq 4$. If G does not contain an induced C_4 , then $\Gamma(G) = r + 1$.

Conjecture 4 For any $r \ge 1$, every r-regular graph without induced C_4 has Grundy number r + 1.

Theorem 5 Let $r \ge 4$ and $3 \le k \le r+1$ be integers. There exists a infinite family \mathcal{F} of r-regular graphs such that $\forall G \in \mathcal{F}, \Gamma(G) = k$.

References

- G.J. Chang, H. Hsu, First-fit chromatic numbers of d-degenerate graphs, Discrete Math. 312 (2012), 2088–2090.
- [2] F. Havet, L. Sampaio, On the Grundy and b-chromatic numbers of a graph, Algorithmica 65 (2013), 885–899.
- [3] M. Jakovac, S. Klavžar, The b-chromatic number of cubic graphs, Graphs Combin. 26 (2010), 107–118.
- [4] S. Shaebani, On the b-chromatic number of regular graphs without 4-cycle, Discrete Appl. Math. 160 (2012), 1610–1614.
- [5] M. Zaker, Results on the Grundy chromatic number of graphs, Discrete Math. 306 (2006), 3166–3173.