Adjacent vertex distinguishing colorings

Margit Voigt

(joint work with Maria Axenovich, Jochen Harant, Jakub Przybyło, and Roman Soták)

Let G = (V, E) be a graph. As usual, N(v) denotes the set of neighbors of a vertex $v \in V$ and $N[v] := \{v\} \cup N(v)$ is the closed neighborhood of v.

We say that an assignment of positive integers to the vertices of G is distinguishing if the sum of the labels of vertices in N[v] differs from the sum of labels of vertices in N[u] for any adjacent vertices u and v unless N[u] = N[v]. Let dis(G) be the smallest k such that there is a distinguishing assignment in G using integers between 1 and k.

Furthermore, assume that every vertex v has a list L(v) of available labels. Let $dis_{\ell}(G)$ be the smallest k such that for every list assignment with $|L(v)| \leq k$ for all $v \in V(G)$ there is a distinguishing assignment giving every vertex v a label from its list.

Define also $dis^{-}(G)$ and $dis^{-}_{\ell}(G)$ using N(v) instead of N[v].

In the talk, we discuss the background of this concept and present some bounds on the parameters defined above.