On the set of simple hypergraph degree sequences

Hasmik Sahakyan

The problem of characterizing the set of degree sequences of simple hypergraphs is one of the known open problems in the hypergraph theory [1]-[3]. For a given $m, 0 \leq m \leq 2^n$, let $\psi_m(n)$ denote the set of all degree sequences of simple hypergraphs on n vertices that have m edges. $\psi_m(n)$ can be considered as a subset of $\Xi_{m+1}^n = \{(a_1, \dots, a_n) : 0 \leq a_i \leq m \text{ for all } i\}$, a ranked poset with a component-wise partial order and with the rank of an element (a_1, \dots, a_n) defined as $a_1 + \dots + a_n$. The subject of our investigation is $\psi_m(n)$, as well as its complement in Ξ_{m+1}^n , the set of integer n-tuples that do not correspond to any degree sequence. A set-theoretical description of $\psi_m(n)$ is given in [4] but the effective algorithmic characterization of $\psi_m(n)$ is not known. Therefore, the study of the complementary area $\Xi_{m+1}^n \setminus \psi_m(n)$ can be supportive in solving the problem algorithmically.

We define \hat{H} , an "upper" subposet of Ξ_{m+1}^n as $\hat{H} = \{(a_1, \cdots, a_n) : m_{mid} \leq a_i \leq m\}$ for all i }, where $m_{mid} = m/2$ for even m, and $m_{mid} = (m+1)/2$ for odd m. Hypergraphs with degree sequences belonging to $\hat{H} \cap \psi_m(n)$, we call "upper" hypergraphs. It is known [4] that all elements of $\psi_m(n)$ can be effectively derived from the set $H \cap \psi_m(n)$. The same is true for the complement, all elements of $\Xi_{m+1}^n \setminus \psi_m(n)$ can be found, having $H \setminus \psi_m(n)$. Thus the problem of characterizing the set of degree sequences of simple hypergraphs is reduced from Ξ_{m+1}^n to \hat{H} . Furthermore, the set of degree sequences of simple "upper" hypergraphs composes an ideal \mathcal{I} in H, and its complement is a filter \mathcal{F} in H. In the process of determining all maximal elements of \mathcal{I} , we found the lowest r_{min} rank, as well as the highest r_{max} rank of maximal elements, finding in this manner the possible range of ranks of maximal elements in \hat{H} (in Ξ_{m+1}^n). Similarly, we found the highest \overline{r}_{max} rank, as well as the lowest \overline{r}_{min} rank of minimal elements of \mathcal{F} , and determine their possible range. We obtain: all $d \in H$ with $\sum d_i < \overline{r}_{min}$ are degree sequences of simple "upper" hypergraphs, and all $d \in \hat{H}$ with $\sum d_i > r_{max}$ are elements of $H \setminus \psi_m(n)$. Further investigations concern the area estimates of valid ranks, depending on the value of m.

References

- [1] C. Berge, Hypergraphs. North Holland, 1989.
- [2] N.L. Bhanu Murthy, M.K. Srinivasan, The polytope of degree sequences of hypergraphs, Linear Algebra Appl. 350 (2002), 147–170.
- [3] W. Kocay, P.C. Li, On 3-hypergraphs with equal degree sequences, Ars Combin. 82 (2007), 145–157.
- [4] H.A. Sahakyan, Numerical characterization of n-cube subset partitioning, Discrete Appl. Math. 157 (2009), 2191–2197.