$(3,1)^*$ -choosability of planar graphs

Min Chen

(joint work with André Raspaud and Weifan Wang)

An $(L, d)^*$ -coloring is a mapping π that assigns a color $\pi(v) \in L(v)$ to each vertex $v \in V(G)$ so that at most d neighbors of v receive color $\pi(v)$. A graph G is said to be $(k, d)^*$ -choosable if it admits an $(L, d)^*$ -coloring for every list assignment L with $|L(v)| \geq k$ for all $v \in V(G)$.

In this talk, firstly, I will show some known results on improper list coloring of (planar) graphs with some restrictions. Then, I will give a short proof of our recent result: every planar graph without adjacent triangles and 6-cycles is $(3,1)^*$ -choosable. This partially answers the question proposed by Xu that every planar graphs without adjacent triangles is $(3,1)^*$ -choosable.